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The effect of the boundary layer at the leading edge on heat transfer near a verti- 
cal semiinfinite heated plate is determined by means of matched asymptotic expan- 
sions. The criterial relation for air is in good agreement with existing experi- 
mentaldata. 

The study of laminar free convection in a medium adjacent to the outer surface of a 
heat-emitting surface is a complex problem because the velocity and temperature fields have 
amutual effect on one another. Until recently, an analytic study of free convection was 
only possible within the confines of boundary-layer theory [i, 2]. The use of perturbation 
methods, which have been actively developed in recent years, provides an opportunity to car- 
ry out a more thorough analysis of free convective heat transfer based on the use of the 
complete equations of motion and heat transfer and on consideration of the mutual effect 
of the boundary layer and the external flow induced by it. From the viewpoint of the method 
of matched asymptotic expansions [3, 4], the solution obtained from boundary-layer theory 
is an approximation of zeroth order in the asymptotic solution as Gr § ~ and is a good de- 
scription of free convective heat transfer for very large values of the Grashof number. A 
correction must be made for moderate values of the Grashof number. The need for such a cor- 
rection follows not only from mathematical considerations, but also from comparison with ex- 
periment [i]. The first correction of this kind was obtained in [5], where the approximation 
of first order was investigated for the problem of free convection near a finite vertical 
plate, However, the lack of information about the behavior of the solution in the region 
outside the plate and the deficiencies of the method used led to a correction to the mean 
coefficient of heat transfer that was negative, contrary to expectations. Explaining this 
by the impossibility of including the effects of the leading edge, the authors corrected 
the solution obtained by means of a study of free convective heat transfer at small Grashof 
numbers [6], which was confirmed in turn by direct numerical calculations [7], but they did 
not succeed in obtaining a unified pattern of flow and heat transfer. 

A more successful study was one by the method of matched asymptotic expansions for the 
first three approximations in the problem of free convection near a vertical semiinfinite 
plate [8], In particular, the expression 

Nux 
Gr~/~ := 0.3568-5 0.3877Gr~ !/2 -5 0 (Or73/~) (1) 

(for Pr = 0.72) was obtained for the local coefficient of heat transfer. 

The method of matched asymptotic expansions was used most systematically in [9]. The 
inner expansion was supplemented by eigensolutions, and the expression (for Pr = 0.72) 

Nu x Gr~/4 -- 0.3568 - -  0,0702clGr~ 1/~ -5 0,8915Gr~ 1/~ - 5 0  (Gr~ 3/4) (2) 

was obtained as the result for the local coefficient of heat transfer, and the expression 
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NHL 
Grl/4 = 0.476 q- 0.625GrE'/4 -k 0 (GrE 1/3), (3) 

for the mean coefficient of heat transfer. 

The value of Eq. (2) is somewhat reduced because of the presence of the undetermined 
constant ci in the term corresponding to the eigensolution, 

An analysis of the application of the method of matched asymptotic expansions to the 
problem of free convection near a vertical plate [5, 8, 9] shows that the first approximation 
has no effect on heat transfer; the inner solution has a self-similar nature for each approx- 
imation, which ensures matching; the solution is not applicable in the neighborhood of the 
leading edge. This is a consequence of a more general statement: A problem containing a cer- 
tain parameter admits of a self-similar solution expressed through this parameter which can- 
not be uniformly valid unless it is an exact solution [4]. In addition, it is assumed in 
the solution that motion occurs only in the half-plane x > 0, which does not correspond to 
experimental observations. 

The purpose of this paper is the development of a perturbation method based on the meth- 
od of matched asymptotic expansions and deformed coordinates [3, 4] in order to include some 
effects of the leading edge. This is accomplished by a shift of the singularities in the 
solution in the direction of their true position by means of a slight deformation of the 
longitudinal coordinate through the expression 

x = X @ sf (X, Y). (4)  

The fo rm o f  t h e  f u n c t i o n  f i s  d e t e r m i n e d  i n  t h e  c o u r s e  o f  s o l u t i o n  f rom t h e  m a t c h i n g  
c o n d i t i o n s  and t h e  r e q u i r e m e n t  f o r  c o n s e r v a t i o n  o f  t h e  s e l f - s i m i l a r  n a t u r e  of  t h e  s o l u t i o n ,  

The b a s i c  e q u a t i o n s  d e s c r i b i n g  s t a t i o n a r y  l a m i n a r  f r e e  c o n v e c t i o n  n e a r  a v e r t i c a l  s e m i -  
i n f i n i t e  p l a t e  i n  t h e  B o u s s i n e s q  a p p r o x i m a t i o n  w r i t t e n  i n  t e rm s  o f  d i m e n s i o n l e s s  s t r e a m  f u n c -  
t i o n  and t e m p e r a t u r e  a r e  [8] 

04 0 I- 00 
04 . a ( v 2 ~ ) _  - _ _ ( v 2 ~ ) _  v 4 ~ + _ _ ,  
Oy O---x Ox Oy Gr ~/~ Oy 

04 0~_ _  0_~ O0 _ I / 2Va 0 
Oy Ox Ox Oy PrGr 

(5) 

with the boundary conditions 

-- = 0 ,  0 = 1 ,  y=O,  x>O,  
ax ay 

Oz~ _ 0 4 _  00 = 0 ,  y = 0 ,  x < 0 ,  
Oy 2 Ox Oy 

O~ O~ -- 0--~ 0, r .-~ oo, ~ =/= 0. 
Ox Oy 

(6) 

The solution of the problem (5), 
sions in the boundary layer and in the outer flow: 

outer expansion 

as ~ § O, for fixed x, y; 

inner expansion 

as E + O, for fixed X, Y. 

(6) is represented in the form of asymptotic expan- 

4 (x, y; ar) = ~4~ (x, y) + ~4~ (x, y) + . . . ,  

0 (x, y; Gr) ~ 0 

4 (x, g; Gr) -- s ~  0 (X, Y) -k s 2 ~  (X, Y) q- . . . ,  

O(x,y; Gr)=O o(x,Y) q-s I ( X , Y ) @ . . .  

(7) 

(8) 
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The form of the expansions (7) and (8) can be made more general by determining the terms 
of the corresponding asymptotic sequences in each step of the solution from matching, but 
the result will be exactly the same, at least to second approximation inclusively. One can 
also write an outer expansion for 0, but the system (5) indicates that the temperature will 
be conserved along a streamline as Gr § | the temperature at infinity is constant and, con- 
sequently, the excess temperature is zero. 

The form of the limiting process restricts the region of applicability of each of the 
expansions. Substitution of the expansions (7) and (8) into the system (5) yields a set of 
problems for determination of the coefficients in the asymptotic expansions. Boundary eondi~ 
tions in each step are determined from Eqs. (6) and matching. 

For the zeroth approximation to the internal solution, we obtain the well-known problem 
in the theory of a thermal boundary layer 

3 F ~ , F o _ + F ~ F ~ + H  ~ = 0 ,  (9) F;"  + --~-- 

where 

3 PrFoHo = 0 ' H ~  4 

F o ( O ) = F  o ( 0 ) - 0 ,  H o ( 0 ) =  1, 

F o (oo) = H o (c~) = O, 

(io) 

% = X3/'Fo(n), Oo = Ho (% n = r x  -~/~. ( z z )  

Assuming the outer flow to be irrotational, we obtain for the determination of the first 
approximation to the outer solution 

VZ~l ---- 0, (12) 

*l(X, 0) --~ x3/4Fo(oO ) ( x >  0), 

%(x, o )=o  (x<O). (13) 

The solution of the problem (12), (13) is given by the Poisson integral for a half-plane 
and has the form 

~i (x, y) = - -  ~r~ Fo (oo)r3/4 sin 3 (9 - -  a)- (14) 
4 

Matching of the inner and outer expansions determines the boundary condition for the 
first approximation to the inner solution: 

a~ l  3 2 
(X, ~ )  = Fo (oo)X -1/4 + Iv --::- Fo (oo)x-'/ ' .  (15) 

OY 4 4 

In accordance with the condition for exponential decrease in vorticity, we assume 

consequently, 

a ~  (x, ~) = o; (16) 
aY 

f~ = -- i. (17) 

For determination of the first approximation for the boundary layer, we have the self- 
similar problem 

3 F' + F ~" +--~-- a Fo-- F ; F'o q-- HI = O , 

(is) 

3 pr  (FoH1), = 0 ' /4~ +-~- 
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F1 (0) = F; (0) = H1 (0) = H1 (oc) = 0, 

F] (oo) = 3 Fo(oO) ' 
4 

(19) 

if one assumes 

F 1 ( ~ ) = ~ 1 - - /  0~o 
OX 

HI(~) = X 3/4 (01 --T--~- ) OOo 
(20) 

From Eq. 

The problem (18), 
mine that 

and as n + ~ 

(17) and the condition for self-similarity (20), we have 

[(X, Y ) = - - Y - - k X  1/4. (21) 

(19) is solved numerically. Even without solution, however, one can deter- 

H~(B) = O, (22) 

3 
~i (~I) ~ FI(~176 kFo(oo) + exp, (23) 

4 

where exp denotes terms which are exponentially small as n § ~. In view of Eq. (16), we as- 
sume 

3 
Fl(oo) - -  kFo(oo ) = 2F1 (oo), (24) 

4 

and then 

Thus, we finally have 

k =  4 Fl(oo ) (25) 
3 F 0 (co) 

:(X, Y) = - -  Y-}- 4 F1(oo ) X,/4. (26) 
3 Fo(~ ) 

Equations (4) and (26) show that when x = 0 and y = 0, X N I/L; i.e., a flow beginning 
somewhat below the leading edge is described by the proposed method. Since O, # 0, a cor- 
rection to the boundary-layer theory appears even in the first approximation, 

By deforming the outer longitudinal coordinate in a similar fashion, 

x = X + 4 FI(~176 XI/%, (27) 
3 Fo(oO ) 

we obtain for the second approximation to the outer flow 

0 z ( 4 Fl(oo ) X,/4 0~1 ~ +  
OX ~ r 3 F o(co) OX / 

02 ( 4 F~(oo) Xl~4 0~1 ) 
+ - -  ~ 2  , = o ,  ( 2 8 )  

Oy z 3 F o (oo) OX 
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r 1 6 2  ( x > o ) ,  

?2(x,  o) = o (x  < o). 
(29) 

The function 

$=(X,y) -  4 F,(oo) X,/4 0% 2 _ F ~ ( o o ) ( 1 _ ~  
3 Fo(~) a -7 -  ~ ) 

(30) 

is a solution of the problem (28), (29). From matching we obtain boundary conditions for 
the second approximation to the boundary layer, 

or= (X, oo) - 0% (x, o) + awo aF, 1 
or  ay ffr ~ ;  + fr -ax - aX F~ (~o), (3l) 

a~'e= (x ,  ~ )  - a2r (.v, o) + (fr)  z a~.o _ o. 
oY 2 o f  ox 2 

(32) 

In order to determine the second approximation to the boundary layer, we obtain the 
self-similar problem 

3 F~Fo F;" + 7  + 1 F'~F'o--3 FzF~, t to_  1 p 1 

1 F;FI+ 1 F ; - - 1  " I~- al"F~ 4 7 ~-6- MFo-- ~ " ' ,  (33) 

wIler e 

( 3  3 F;H2 - 3 H,oF.1 = 5 MH, ~ 1 lZH ~ H~ H- Pr Foil; H- -~ 4 ".,, 16 - - -~-  ' 

p; =_]gl Me;F; '~--Na neoF;-- 799 foe; ~-, 4-1 Me;" 41 v; , (34) 

if one assumes 

Fz(M)= Xa/4 @F2 f z az~o f a~l ) 
2 OX z ~ ' 

fz a20o ) Ha(M) = X 3/2 O2-- 
2 aX 2 

(35)  

The boundary conditions have the form 

F~(O) = F~ (0) = M~(O) = H~(oo) = O, 

F;(oo)= F,(oo)z~ ' F~(oo)= ~6 F~176176 
(36) 

The problem (33), (36) is solved numerically. As n § | 

, ~i;2 .... Xa/4 ( Fl(OO ) 8F~ (oo) ) 
a I1 3F0(oo ) -kF2(oo)i +exp, (37) 

which ensures an exponential decrease in vortlcity. 

In order to find the eigensolutions, which can be omitted, we add to the inner expansion 
terms of the form 
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Fig, i .  Comparison of calculated and experi- 
mental results: I) from boundary-layer theory; 
2) from Eq. (3); 3) from Eq. (46). 

c k ~ + ,  fh ('1) c ~ h  gh (q) 
X 3  / 4(o~k-1) , X3 / 4o~k" . (38) 

For the determination of fk and gk we have 

(39) 

3 ' F  ' g;  -k -~- Pr (g~, oT o~hghFo-k (l --och) [kH'o) = O, 

/k (o) = f~ (o) = g .  (o) = / ~  (oo) = gk (oo) = o. (40) 

The first eigensolution, corresponding to the eigenvalue a = 4/3, has the form [9] 

f~ = q X ' / 4  0 %  O0 o 
O X  ' g l  = c1 X 3 / 4  - -  ( 4 1 )  

OX 

Since the eigensolutions correspond to indeterminacy in the flow near the leading edge 
[3], and the solution for the first approximation to the boundary layer, or at least that 
portion of it which has the form 

4 Fl(oo ) X , /4  OT o 4 Fl(OO ) XI/4 O0 o 
3- F0(oo ) OX ' 3 Fo(oo ) OX ' (42) 

arises because of attempts to eliminate this indeterminacy, it is natural to set up the def- 
inition 

4 F I (oo) 
q -- (43) 

3 F 0 (co) 

Defining the local coefficient of heat transfer by the expression 

y-=o, 
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we obtain for the local dimensionless coefficient of heat transfer 

Nu~ --~ _ / 4 0  (0) + F,(oo) /4~ (0) F, (oo) H;~ (0) 
Gr~/4 3F 0(oo) " G r ~ / ~  + 3F 0(oo) Gr~/3 

5F~(oo) H;(0) H~ (0) q_ 0(Gr~_3/4)" 
- -  18F~ (oo) Gr~/2 Gr~/' 

(45) 

A comparison of Eqs. (I), (2), and (45) shows that the latter has a more complicated 
structure resulting from the appearance of corrections because of the displacement of the 
solution, with the corrections being expressed through the local coefficient of heat transfer 
defined in boundary-layer theory. The effect of the Prandtl number appears implicitly in 
the values of H~(O), Fo(~), FI(~), and H~(0). 

Integration of Eq. (45) along the plate, which is possible because X # 0 at the leading 
edge, yields an expression for the mean coefficient of heat transfer (for Pr = 0.72): 

Nu L = 0,476 Gr~/4 + 0.238 In Gr~/4 + 0.605 + 0 (Gr~I/12). (46) 

A comparison of experimental and theoretical results for air is shown in Fig. i. The 
proposed method yields good agreement of results in the region of moderate values of Gr. It 
is recommended that Eq. (46) not be used for Gr L < i0, since the error approaches the order 
of unity in this case. Equation (46) can be extended to other values of Pr also. 

NOTATION 

x, y, dimensional Cartesian coordinates; x, y, dimensionless coordinates; L, character- 
istic linear dimension; ~, stream function; T, temperature; 8 = (T -- T~)/(T w -- T ), dimen- 
sionless excess temperature; g, acceleration of gravity; 8, coefficient of volumetric expan- 
sion; ~, coefficient of kinematic viscosity; a, coefficient of thermal diffusivity; %, coef- 
ficient of thermal conductivity; a, coefficient of heat transfer; e = Gr- , expanslon pa- 

3 172 rameter; ~ = ~(g~(T~ -- T~)L ) , dimensionless stream function; Y = y/E, variable for in- 
w I/~ . . . .  = 2 I/= 

ternal expanslon; n = Y/X , self-simllar varlable for internal expanslon; r = (x + y ) , 
@ = arctan y/x, variables for external flow; Pr = ~/a, Prandtl number; Nu x = axX/%, local 
Nusselt number; Gr x = gB(T w -- T )~s/~2, local Grashof number. Indices: x, local values; | 
external flow; w, wall; L, value averaged over plate length L. 
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